ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Переделка фонарика под аккумуляторные батарейки. Переделка налобного фонаря на батарейкам в аккумуляторный

Здравствуйте читатели Муськи.
Решил поведать Вам свою небольшую историю о доработке китайского налобного фонарика с выносным отсеком питания на 1-2 литиевых аккумуляторах 18650.
В принципе данная тема уже обсмактывалась в некоторых постах и обзоры данных плат были неоднократно, поэтому справочной информации будет не много, но возможно и тут будет полезная информация.
Кому интересно, прошу под cut
И так.
Имею в пользовании широко распространенный дешевый китайский фонарь-налобник с выносным блоком аккукмуляторов расположенном на затылке. (головы фонарей могут разниться но отсеки у многих идентичны)

Явный недостаток такой конструкции, это необходимость вынимать аккумулятор из отсека при необходимости его заряда, и так же нужно еще иметь под рукой зарядку для 18650 литиевого аккумулятора.
Так как этот фонарик прописался в бардачке автомобиля, то мобильной зарядки для него нет и при необходимости зарядки нужно вынимать аккум и нести его домой для процесса заряда.

Когда-то прикупил себе лот из 10шт. плат контроллеров MP1405


Краткие Технические характеристики:

Модель: MP1405
Входное напряжение - 5V
Напряжение окончания заряда: 4,2 в ± 1%
Максимум зарядный ток: 1000mA
Напряжение контроля разряда аккумулятора: 2,5 в
Порог срабатывания защиты по перегрузке: 3A
Вес:7,30 г

Отличие этой платы от неоднократно обозреваемых более дешевых плат типа таких:
В том, что плата контролирует не только заряд, но умеет следить и за разрядом аккумулятора. А это как нельзя к стати при использовании не защищенных литиевых банок аккумуляторов в устройстве которое не снабжено драйвером с функцией контроля разряда.
Так как взглянув на плату с «драйвером» фонарика, было ясно, что там не пахнет не только контроллером уровня разряда, но и самим драйвером хоть с какой бы то ни было стабилизацией.


Все мозги фонаря, это микросхема выбора режимов на чипе CX2812 и транзистор A1SHB (P-Channel 1.25-W, 2.5-V MOSFET)
Поэтому решено было внедрять плату с контролем как заряда так и разряда аккумулятора.

Собственно сделать это не сложно. Сначала вытянул плату с фонарика. Соединил выход платы контроллера с входом питания платы драйвера фонаря и на клеммы B+ и B- подпаял клеммы батарейного отсека.
Вот так выглядела проверка включения до сборки:


Межмодульные соединения производил проводом МГТФ.

За одно в таком распотрашенном виде сделал замеры токов идущих в аккумулятор в процессе заряда и в процессе питания фонаря на макс. яркости (Установленный диод cree Q5)

Замер тока заряда идущего в аккумулятор


(Показания амперметра не совсем точные т.к. при замере обнаружил что горит индикатор севшей батарейки в тестере поэтому показания могут плавать но обычно погрешность не очень большая, порядок цифр понять можно)

Замер потребления тока фонарем в процессе работы на макс. яркости

Замеры показали вполне удовлетворительные цифры. Ток заряда как и обещано спецификацией платы- 1А. Напряжение отсечки не тестировал (не было времени ждать полного разряда аккумулятора) но думаю плата должна отрабатывать алгоритм своей работы корректно.

Далее пошел процесс запихивания обеих плат в корпус батарейного отсека, выпиливание аккуратного отверстия под microUSB разъем и организация индикации процесса заряда.
Изначально я был уверен что места в отсеке полно и плату расположу без проблем, но при более полном анализе ситуации и прикидочных примерках понял что не все так просто.
Пришлось сдвинуть плату драйвера фонарика вбок, чтоб плата зарядки легла по соседству.
Финал сих манипуляций таков:




плата контроллера плотно вставляется а отверстие выпиленное под microUSB, дополнительно фиксировалось «жидкой резиной» (не знаю как называются трубки для клеевых пистолетов), и дополнительно обе платы зажимаются верхней пластиковой накладкой. Вообщем все держится очень хорошо.

Вопрос индикации я решил организовать следующим образом:
Зеленый индикаторный диод, который сигнализирует об окончании процесса заряда, я решил выпаять и прикрепить по соседству со светодиодом распаянным на плате контроллера фонарика (дублирующий свет который горит на затылке при включении фонаря)
Таким образом при окончании зарядки фонарика за белым рассеивателем будет гореть зеленый свет.
Вот так:

А индикатор процесса зарядки я решил не трогать и оставил на своем месте. Его можно увидеть в щель между корпусом и microUSB портом.
вот так это выглядит:


Считаю такого индикатора вполне достаточно.
Вот в принципе и ВСЁ.
Хотя нет,

вот еще несколько фоток общего вида фонаря и порта зарядки крупным планом:






Теперь точно все. По данной схеме я еще модифицировал похожий фонарь только с отсеком на 2 параллельных аккумулятора 18650 и на кристалле XML-T6, но сути дела это не меняет.

Теперь данный девайс можно смело заряжать от любого USB порта которые сейчас есть даже в автомобилях или любой телефонной зарядки имеющей microUSB конец.

Всем спасибо за внимание. С удовольствием отвечу на вопросы. Если найдете к чему прицепиться, не стесняйтесь, тыкайте носом.
По традиции моя зверушка, не котэ.

Поступил мне тут заказ от одного хорошего знакомого, который увлекается рыбалкой. У него был простенький налобный фонарик, который обладал рядом недостатков, но полностью устраивал по размерам и внешнему виду. Ну что ж, для хорошего человека - хорошее дело, ну а для меня - просто тренировка мозгов и рук.

Приступим. Для начала выделю преимущества данного фонарика:

  • компактный и легкий корпус;
  • возможность регулировки фокуса;
  • удобное расположение органов управления (кнопка), учитывая что фонарик налобный.

Теперь недостатки, которых куда больше:

  • неудобное управление - три режима которые переключаются по циклическому алгоритму (четвёртый режим "выключено"), то есть если нужный режим пропустил, то надо "прощелкивать" все режимы по кругу, пока не "дощелкаешь" до нужного режима;
  • один из режимов - мигающий - вообще бесполезный, только мешает управлению;
  • нет контроля состояния аккумулятора, то есть при каждом цикле разряда портит аккумулятор, сильно разряжая его (если не выключить, может посадить аккумулятор до 1...2 вольт);
  • нет стабилизации тока, то есть с разрядом аккумулятора яркость постепенно падает;
  • заряд аккумулятора идет тупо через резистор, нет никакого контроля зарядного тока и отсутствует правильный алгоритм заряда литий-ионного аккумулятора (при каждом цикле заряда гробит аккумулятор);
  • стоИт китайский светодиод с низкой эффективностью;
  • стоИт китайский аккумулятор с завышенной емкостью на этикетке.

Теперь о том, что бы хотелось получить в итоге:

  • удобное управление режимами, убрать мигающий режим;
  • ввести стабилизацию тока через светодиод (поставить драйвер);
  • заменить светодиод на более эффективный и надежный (CREE XPG), тёплого свечения (вместо штатного холодного);
  • сделать контроль разряда аккумулятора, при разряде аккумулятора выключать фонарик;
  • добавить контроллер заряда литий-ионного аккумулятора;
  • заменить аккумулятор на нормальный.

Вскрываем корпус фонарика.

Здесь мы видим, что его "мозги" сделаны на основе БИС микросхемы, поэтому они не поддаются никакой модификации.

При замене светодиода на другой светодиод, выходной ток изменился почти на 50%, что говорит об отсутствии какой либо стабилизации тока. Решено выкинуть родную плату и сделать свою. В качестве управляющего контроллера я выбрал ATtiny13A-SSU ввиду следующих основных преимуществ:

  • малая цена - около 30 рублей (на момент написания статьи, май 2014г.);
  • компактный корпус поверхностного монтажа;
  • в режиме сна потребляет менее 500 наноампер (!!!);
  • возможность работы при низких напряжениях питания (вплоть до 1.8в);
  • возможность работы при температуре ниже 0 градусов.

В качестве драйвера светодиода выбор пал на AMC7135 благодаря следующим характеристикам:

  • возможность работы при низких напряжениях питания;
  • минимальное падение напряжения на микросхеме - всего 0.15в;
  • возможность ШИМ-регулировки яркости светодиода;
  • компактный корпус.

Схема драйвера:

Небольшие пояснения о работе схемы и применяемых компонентах. Для измерения уровня заряда аккумулятора, используется АЦП микроконтроллера и внешний источник опорного напряжения (далее ИОН) REF3125 с выходным напряжением 2,5В. Внешний ИОН используется не просто так - с его помощью достигается измерение напряжения аккумулятора с минимальными погрешностями, так как точность встроенного в микроконтроллер ИОН"а оставляет желать лучшего. Управление AMC7135 производится при помощи ШИМ-сигнала, частотой 500 Гц. При отключении драйвера, микроконтроллер отключает AMC7135, обесточивает ИОН, и переходит в спящий режим "Power Down", потребляя менее 1 мкА . Устройство не требует какой-либо настройки и корректировки, и после сборки и прошивки начинает работать сразу. Чтобы можно было выбрать напряжение отключения драйвера "под себя", в конце статьи прилагается архив с прошивками под напряжения 3,1...3,6 Вольт с шагом 0,1В.

Развожу печатку, травлю, запаиваю, пишу софт в AVR Studio 5, прошиваю микроконтроллер. На этапе изготовления платы нужно просверлить отверстия, и соединить перемычками дорожки с обеих сторон платы. Я взял медную жилу от витой пары, залудил её, и сделал из неё перемычки.

Вот что из этого получилось. Печатку и набор прошивок можно скачать в конце статьи.

На одной стороне платы (двусторонняя диаметром 18 мм) разместились все управляющие мозги, на другой стороне платы расположился драйвер светодиода с полигоном из меди для должного охлаждения. Опционально на плату может быть установлена вторая микросхема-драйвер AMC7135 для увеличения максимального выходного тока с 350 мА до 700 мА. Небольшие размеры платы выбраны не случайно - необходимо было уместить драйвер на родное место в корпусе. Вот фотка для оценки размеров получившейся платки:

Родной контроллер управления давал на светодиод следующий ток в режимах:

  • 1 режим, примерно 200 мА;
  • 2 режим, примерно 60 мА;
  • 3 режим, примерно 60 мА (мигающий).

Родной контроллер управляется по следующему алгоритму. При нажатии на кнопку выполнялся переход на следующий режим. 1 --> 2 --> 3 --> ВЫКЛ и так по циклу. Если нужный режим случайно пропустил, то придётся сидеть и "нащёлкивать" пока не дойдёшь до нужного режима. Также для выключения фонарика нужно "прощёлкать" все режимы. О быстром включении/отключении фонарика можно даже и не мечтать.

Моя плата контроллера с драйвером выдает следующие токи в разных режимах:

  • 1 режим, 30 мА;
  • 2 режим, 130 мА;
  • 3 режим, 350 мА (будет использоваться кратковременно, так как в корпусе фонарика не предусмотрено должного охлаждения для светодиода).

Мой контроллер управляется по следующему алгоритму. Однократное (короткое) нажатие выполняет включение/отключение фонарика (с сохранением последнего выбранного режима). Длительное удерживание кнопки выполняет переключение режима на следующий. Таким образом, мы имеем возможность как быстро включать/отключать фонарик, так и менять режимы. Надоедливого и бесполезного режима "мигалки" теперь нету. При снижении напряжения аккумулятора до заданного в "прошивке" уровня, фонарик переходит на предыдущий режим. Тоесть если стоял режим 3, то сначала контроллер включит режим 2, затем фонарик поработает какое-то время, затем включится режим 1, фонарик поработает ещё какое-то время, и только потом он выключится. В интернете уже есть аналогичные конструкции, но они либо имеют управление при помощи разрыва цепи питания, что не всегда оправданно, либо у них не используется режим сна, а это очень важно!!

Итак, выкидываем старые мозги, а также убираем конденсатор, зачем-то подключенный параллельно кнопке. Наверно китайцы боролись с дребезгом контактов. У меня обработка дребезга будет программная, поэтому конденсатор больше не нужен.

Также достаём штатный светодиод, будем менять его на эффективный светодиод CREE XPG с тёплым свечением.

Готовим наш новый светодиод:

Собираем оптический блок:

Теперь встраиваем новую плату управляющего контроллера и драйвера светодиода:

Cобираем корпус:

Таким образом, на внешний вид не произошло никаких изменений, но внутри теперь всё как и должно быть. Контроль разряда аккумулятора, стабилизация тока, нормальное управление режимами, и "правильный" светодиод. В выключенном состоянии контроллер потребляет мало энергии, так как микроконтроллер переводится в режим сна.

Позже был установлен нормальный контроллер заряда аккумулятора на микросхеме MAX1508, а также родной китайский аккумулятор был заменён на внешний блок аккумуляторов, состоящий из 2 оригинальных банок Sanyo UR18650.

В активном режиме микроконтроллер ATtiny13A потребляет менее 500 мкА благодаря работе на тактовой частоте 128 кГц. Также в активном режиме добавляется потребление AMC7135, потребление внешнего ИОН, и потребление внутреннего АЦП микроконтроллера. Суммарный ток потребления в активном режиме зависит от используемого ИОН, и может составлять от 0,1 мА до 1 мА. Я применил ИОН REF3125, суммарное потребление схемы в рабочем режиме составило 0,5...0,8 мА.

ИОН REF3125 можно заменить на аналоги:

  • ADR381
  • CAT8900B250TBGT3
  • ISL21010CFH325Z-TK
  • ISL21070CIH325Z-TK
  • ISL21080CIH325Z-TK
  • ISL60002BIH325Z
  • MAX6002
  • MAX6025
  • MAX6035BAUR25
  • MAX6066
  • MAX6102
  • MAX6125
  • MCP1525-I/TT
  • REF2925
  • REF3025
  • REF3125
  • REF3325AIDB
  • TS6001

Прилагаю небольшое видео, демонстрирующее управление режимами. Видео снято давно, светодиод ещё тогда стоял родной, позже он был заменён на CREE XPG, также стоял родной аккумулятор. Лень было заново снимать видео. Также хочу предупредить, что не каждый программатор поддерживает прошивку микроконтроллеров на частоте 128 кГц. Для прошивки я использовал программатор "USBAsp" со включенной опцией "Slow SCK". Всем удачных самоделок!!

Внимание! Прошивка управляющего микроконтроллера была полностью переписана. Алгоритм работы программы стал более корректным, устранены некоторые недочёты в работе устройства. Ниже Вы сможете скачать пробную версию прошивки с ограничением по времени работы 10 минут. По истечении тестового времени, гаснет светодиод и блокируется управление. После переподключения аккумулятора, вновь получаем 10 минут тестового времени.

Полную версию прошивки можно приобрести .

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
МК AVR 8-бит

ATtiny13A

1 корпус SOIC 208 mil В блокнот
Конденсатор 1 мкФ 1 не менее 1 мкФ В блокнот
Резистор

4.7 кОм

2 или 3...10 кОм

У многих имеются различные китайские фонарики, работающие от одной батарейки. Типа такого:

К сожалению, они весьма недолговечны. О том, как вернуть фонарик к жизни и о некоторых простых доработках, способных улучшить подобные фонари - я расскажу далее.

Самое слабое место у подобных фонарей - кнопка. У неё окисляются контакты, в результате чего фонарик начинает светить тускло, а затем, может вообще перестать включаться.
Первый признак - фонарь с нормальной батареей светит слабо, но если несколько раз пощёлкать кнопкой, яркость увеличивается.
Самый простой способ заставить такой фонарь светить - поступить следующим образом:


1. Берём тонкий многожильный провод, отрезаем одну жилку.
2. Накручиваем проводок на пружину.
3. Изгибаем провод, чтобы батарейка не порвала его. Провод должен слегка выступать
над закручивающейся частью фонарика.
4. Плотно закручиваем. Излишек провода обламываем (отрываем).
В результате, провод обеспечивает хороший контакт с минусовой частью батарейки и фонарик
засияет с должной яркостью. Разумеется, кнопка при таком ремонте остаётся не удел, поэтому
включение - выключение фонарика производится поворотом головной части.
Мой китаец так проработал пару месяцев. Если нужно поменять батарейку, заднюю часть фонаря
трогать не следует. Отворачиваем голову.

ВОССТАНАВЛИВАЕМ РАБОТОСПОСОБНОСТЬ КНОПКИ.

Сегодня я решил вернуть кнопку к жизни. Кнопка находится в пластиковом корпусе, который
просто впрессован в заднюю часть фонаря. В принципе, её можно вытолкнуть обратно, но я поступил немного иначе:


1. Делаем свёрлышком 2 мм пару отверстий на глубину 2-3 мм.
2. Теперь можно пинцетом выкрутить корпус с кнопкой.
3. Извлекаем кнопку.
4. Кнопка собрана без клея и защелок, поэтому её легко разобрать канцелярским ножиком.
На фото видно, что подвижный контакт окислился (круглая фигня в центре, похожая на кнопку).
Его можно почистить ластиком или мелкой шкуркой и собирать кнопку обратно, но я решил дополнительно облудить и эту часть, и неподвижные контакты.


1. Зачищаем мелкой шкуркой.
2. Облуживаем тонким слоем места отмеченные красным цветом. Протираем спиртом от флюса,
собираем кнопку.
3. Для увеличения надёжности, я припаял пружину к нижнему контакту кнопки.
4. Собираем всё обратно.
После ремонта, кнопка работает отлично. Конечно, олово тоже окисляется, но поскольку олово - довольно мягкий металл, я надеюсь, что окисная плёнка при работе кнопки будет
легко разрушаться. Недаром же на лампочках центральный контакт делают из олова.

УЛУЧШАЕМ ФОКУСИРОВКУ.

Что такое «хотспот», мой китаец представлял весьма смутно, поэтому я решил его просветить.
Откручиваем головную часть.


1. В плате есть небольшое отверстие (стрелка). С помощью шила выкручиваем начинку,
при этом слегка давим пальцем на стекло снаружи. Так выкручивается легче.
2. Снимаем отражатель.
3. Берём обыкновенную офисную бумагу, пробиваем офисным дыроколом 6-8 отверстий.
Диаметр отверстий дырокола замечательно совпадает с диаметром светодиода.
Вырезаем 6-8 бумажных шайбочек.
4. Кладём шайбы на светодиод и прижимаем отражателем.
Тут придётся поэкспериментировать с количеством шайб. Я таким способом улучшал фокусировку у пары фонариков, количество шайб было в диапазоне 4-6. На текущем пациенте их потребовалось 6.
Что получилось в итоге:


Слева - наш китаец, справа - Fenix LD 10 (на минимуме).
Результат вполне приятный. Хотспот стал ярко выраженным и равномерным.

УВЕЛИЧИВАЕМ ЯРКОСТЬ (для тех, кто немного разбирается в электронике).

Китайцы экономят на всём. Пара лишних деталек - увеличение себестоимости, поэтому не ставят.


Основная часть схемы (отмеченная зелёным) может быть различной. На одном-двух транзисторах или на специализированной микросхемке (у меня схема из двух деталей:
дроссель и микросхема с 3-мя ногами, похожая на транзистор). А вот на части отмеченной красным - экономят. Я добавил конденсатор и пару диодов 1n4148 параллельно (шотки у меня не нашлось). Яркость светодиода увеличилась процентов на 10-15.


1. Так выглядит светодиод в подобных китайцах. Сбоку видно, что внутри толстая и тонкая ножки. Тонкая ножка - это плюс. Ориентироваться нужно по этому признаку, потому что цвета проводов могут быть совершенно непредсказуемыми.
2. Так выглядит плата, к которой припаян светодиод (с обратной стороны). Зелёным цветом обозначена фольга. Провода, идущие от драйвера, припаивают к ножкам светодиода.
3. Острым ножом или треугольным надфилем разрезаем фольгу на плюсовой стороне светодиода.
Всю плату зашкуриваем, для снятия лака.
4. Припаиваем диоды и конденсатор. Диоды я взял из сломанного компьютерного блока питания, танталовый конденсатор выпаял из какого-то сгоревшего винчестера.
Плюсовой провод теперь нужно припаивать к площадке с диодами.

В результате, фонарик выдаёт (на глаз) 10-12 люмен (см. фото с хотспотами),
если судить по фениксу, который в минимальном режиме выдаёт 9 люмен.

И последнее: преимущество китайца над фирменным фонариком (да-да, не смейтесь)
Фирменные фонари рассчитаны на то, что в них могут использоваться аккумуляторы, поэтому
с батарейкой разряженной до 1 вольта, мой Fenix LD 10, попросту не включается. Совсем.
Я взял севшую щелочную батарейку, которая отработала свой срок в компьютерной мышке. Мультиметр показал, что она села до 1.12в. Мышка на ней уже не работала, Fenix, как я и сказал, не запустился. А вот китаец - работает!


Слева - китаец, справа - Fenix LD 10 на минимуме (9 люмен). К сожалению, баланс белого сбит.
У феникса температура 4200К. Китаец синит, но не так фигово, как на фото.
Ради интереса я попробовал добить батарейку. На этом уровне яркости (на глаз 5-6 люмен) фонарь проработал около 3-х часов. Яркости вполне достаточно, чтобы подсветить себе под ноги в тёмном подъезде\лесу\подвале. Потом еще часа 2 яркость снижалась до уровня «светлячка». Согласитесь, 3-4 часа с приемлемым светом, могут многое решить.
За сим позвольте откланяться.
Stari4ok.

З.Ы. Статья - не копипаст. Маде ин я, специально для «НЕПРОПАДУ»!

Добрый день всем читателям и почитателям сайта Радиосхемы! Сегодня хочу вас ознакомить с очередной переделкой китайского фонаря.

Как-то раз достался мне пластиковый корпус внушительных размеров от какого-то китайского фонарика неизвестной фирмы, совершенно бесплатно. Решил, что пригодится - что-нибудь сделаю. Разобрав, обнаружил внутри совершенно дохлый аккумулятор неизвестного производителя, на нём нет ни одной надписи. Светоизлучающие элементы так же отсутствовали. Ну и отложил его до лучших времён.

Замена аккумулятора

Впоследствии был куплен аналогичный по размерам аккумулятор на 6 вольт 4,5 А/ч. Правда размер его был чуточку больше, поэтому пришлось корпус, что называется «доработать напильником».

В верхней части фонаря, очевидно, была какая-то лампа накаливания. Не много пораскинув мозгами и глазами по своим закромам, обнаружил, что в место последней, очень неплохо подходит линза от одноваттного светодиода. Которая, при помощи всё того же напильника, удачно вписалась в сие технологическое отверстие, вместе с тем же светодиодом. И на него же в последствие было приклеено два кусочка алюминиевого профиля от раздвижных мебельных дверей, в качестве радиатора. Изначально хотелось поставить туда трёх ваттный светодиод, но опыт использования таких диодов говорил, что не хватит площади охлаждения у моего импровизированного радиатора (а больший по размеру, не уместился бы внутри фонаря), поэтому решил остановиться на одноваттном диоде.

Запитывать светодиод хотел с помощью . Но тут попалась под руки автомобильная зарядка для телефона, как выяснилась построенная на каком-то китайском аналоге всё той же МС34063, так как схема совпадала один в один. Решил взять эту плату за основу, отпаял USB разъём, заменил делитель напряжения на многооборотный подстроечный резистор. Выставил ток в 270 мА (в то время как диод рассчитан на 350 мА - будет запас). Силы света вполне хватает, чтобы ночью осветить пространство метров на 15-20.

Установка светодиодов

Далее, в нижней части, скорее всего, была какая-то люминесцентная лампа. Что можно определить по характерным выступам на отражателе. Не долго думая, решил установить туда светодиоды, недавно пришедшие с Китая:

Делалось всё очень просто. На бумаге в клеточку разметил расположение светодиодов, приклеил на отражатель бумажным клеем и просверлил миллиметровым сверлом отверстия под выводы. Убрал бумагу, почистил отражатель тряпочкой от клея, вставил светодиоды и загнул ножки. Так как не хотелось лепить драйвер, решил ограничиться резисторами. Светодиоды соединил все параллельно и на каждый светодиод поставил по резистору на 180 Ом, использовал для этого SMD резисторы, которые вплавил прямо в пластик, так как аккумулятор оказался великоват и места для выводных элементов просто не оказалось.

Выключатель питания расположен в верхней части ручки и имеет три фиксированных положения. В среднем положении всё выключено, в крайнем заднем положении включена нижняя часть фонаря, она даёт рассеянный свет. А в крайнем переднем положении включается верхняя часть и даёт узко направленный пучок света, плюс к нему запитывается нижняя часть через припаянный к выключателю диод.

Индикатор напряжения

Потом возникла мысль сделать индикацию заряда аккумулятора. Перелопатил интернет, нашёл такую таблицу:

Так как аккумулятор у меня на 6 вольт числа с графы «напряжение» необходимо разделить на два. Решил собрать индикатор на широко распространённой микросхеме LM324, представляющей из себя счетверённый операционный усилитель (ОУ). Так как похожую схему уже паял для световой индикации металлоискателя, то у меня осталась печатка, которую впоследствии пришлось немного доработать. Для отображения информации о состоянии аккумулятора взял четыре значения (по числу ОУ) - 20%, 40%, 60% и 80%. Полдня пришлось убить только для расчета делителя напряжения, даже специально составил для этого таблицу в Excel, что бы легче было считать.

Кнопку включения индикатора вывел на корпус под ручкой, при нажатии на неё загорается соответствующее заряду число светодиодов. Если горит один то 20%, если все, то 80% и больше.

Power Bank

Следующей функцией моего фонаря стала возможность заряжать мобильные устройства. Так как аккумулятор имеет не плохую ёмкость, он вполне может .

Долго думал над тем, каким образом согласовать уровни напряжений аккумулятора и мобильного телефона. Сначала хотел сделать всё тот же преобразователь на МС34063, но он не подошёл из-за маленькой разницы напряжений, был вариант установить LM7805, но он опять же отпал по той же причине. В итоге, пообщавшись на нашем форуме с друзьями радиолюбителями (за что им огромное спасибо!) пришёл к выводу, что можно использовать обыкновенный резистор, который будет ограничивать ток и путём не сложных манипуляций с законом Ома был произведён рассчёт данного элемента. Получилось 3 Ома 1 Вт.

Индикатор заряда

Далее предполагается модернизация фонаря, путём установки на него солнечной панели на боковую поверхность корпуса, для постоянной подзарядки аккумулятора. Ведь большую часть времени фонарь находится в выключенном состоянии. Получится такая походная, автономная мини электростанция. Для зарядки мобильника и освещения. На этой весёлой ноте разрешите откланяться, до новых встреч на страницах сайта ! Автор - Тёмыч (Артём Богатырь)

Обсудить статью КАК УЛУЧШИТЬ КИТАЙСКИЙ ФОНАРИК

Приветствую всех читателей mysku! Сегодня я хочу рассказать о том как переделал налобный фонарь. Все доработки достаточно универсальны и могут быть применены и к другим фонарикам.
Так как идея оформить все в виде обзора пришла ко мне после того как были взяты в руки напильник и паяльник, то некоторые оригинальные фотографии уже не получится сделать. Впрочем на сайте есть подобные обзоры без переделок, ознакомиться можно или .
Итак, что прислали китайцы: в симпатичной, аккуратненькой коробочке лежат две зарядки, от сети и автомобильная, и сам фонарь.


Сначала про зарядки. Сетевая имеет стандартный минимум деталей, поэтому про надежность и качество сильно и рассказать нечего. Её фактические характеристики: напряжение без нагрузки 4.17 вольт, ток под нагрузкой примерно 0.4А(на КЗ 0.48А).

Что касается автомобильной, то тут дела еще хуже! Два резистора, один ограничивает ток светодиода, другой, по замыслу китайцев, является сложным стабилизатором тока/напряжения, в соответствии с вольт-амперной характеристикой заряда литиевого аккумулятора (сарказм). Если без шуток, то советую такую зарядку либо сразу выкинуть, либо убрать подальше от случайного использования.

Теперь налобник. Конструктивно состоит из самого фонаря и отдельно батарейного отсека. Отсек рассчитан на два соединенных параллельно аккумулятора формата 18650, с защитой тоже подходят, но только не с плоским плюсовым контактом(об этом ниже, в доработке). В том же отсеке расположен драйвер и гнездо для подключения зарядки. Драйвер имеет 2 режима яркости,1.3А и 0.27А на диоде, и строб. Вид работы выбирается последовательным перебором всех режимов плюс выключение.
Фонарь на первый взгляд выглядит качественно. Линза перемещается с достаточным усилием, нет люфтов. Есть регулировка по вертикали с фиксируемыми положениями. Теперь про свет. Он, на мой взгляд, довольно холодный, немного в синеву.
Это были данные объективного контроля, теперь о том, что меня явно не устраивает. Во-первых температура света. По ощущениям родной диод светит на 7000К, его я заменю на . Это нейтральный белый, что-то среднее между теплым и холодным. Сделать нормальную фотографию для сравнения не получается, цвета не те, но все-таки выложу что получилось.

Два диода под белым листом.

Справа тот что был, слева замена.


Пилюля. В оригинале было так: звезда на которой установлен светодиод едва касалась самой пилюли. Как видно тепловой контакт просто мизерный, к тому же отсутствовала паста.

Эту проблему я решил с помощью алюминиевого диска, размером как внутренний диаметр пилюли, который прикрутил к звезде светодиода (фото в сборе будет ниже).
Драйвер. За основу был взят «народный» на микроконтроллере ATtiny13A с 8-ю стабилизаторами тока AMC7135.
Каждый стабилизатор рассчитан на ток 350мА, а так как они включены параллельно, то суммарный ток равен 2.8А.Яркость регулируется за счет ШИМ.Изначально прошивка микроконтроллера содержит несколько наборов с режимами работы. Выбрать подходящий набор режимов можно запаяв нужную звездочку на общий контакт. Описание всех режимов обычно можно узнать у продавца драйвера. Я пошел чуть дальше. Было решено немного доработать драйвер и поменять прошивку с режимами. Подробную методику доработки можно почитать на сайте и на . Расскажу вкратце. Основная цель-повысить КПД, убрать ненужные стробососы, изменить режимы яркости. Перерезаем две дорожки и припаиваем две перемычки.
Далее программируем микроконтроллер, для этого нужен либо программатор через USB, либо небольшая приспособа для COM порта. Заказывать и ждать месяц готовый программатор не очень хотелось, тем более что нужно было на один раз, поэтому я решил спаять приспособу для COM.

Слабонервным лучше не смотреть!

Схема
Приспособа
Все свои одноразовые поделки делаю навесным монтажем. Просто привычка

Подробности пайки, процесса программирования упускаю, это довольно большая тема, её лучше оформить отдельно, об этом можно подробно почитать по ссылкам выше, скажу лишь что делал подобную процедуру впервые и у меня вопросов не возникло, все нюансы расписаны на той же фонаревке. Итак, что получилось в итоге: драйвер с одним набором из 5 режимов яркости
2.8А
1.05А
0.35А
0.16А ШИМ
0.01А ШИМ
Выбор режима осуществляется кратковременным выключением питания. Есть память последнего состояния.
Спросите зачем мне 5 режимов яркости?? Это философский вопрос, я пока не готов дать на него ответ. Те кому такой набор не нужен может выбрать любую другую прошивку под свои запросы. Кстати, ток в максимальном режиме можно уменьшить если перерезать дорожку к управляющему выводу стабилизатора тока. По принципу один отключенный стабилизатор это минус 350мА от максимального режима яркости.
Новый драйвер я решил прописать вместе со светодиодом в одной пилюле, благо место есть. Вид в сборе.

Провод соединяющий фонарь с батарейным отсеком тоже заменил. Правда ничего хорошего под рукой не попалось, поэтому я сделал его сам. Взял 2 провода МГТФ и поместил их в термоусадку.
Если кто-то сомневается в целесообразности такой замены я приведу пример: при одинаковой длине, при токе 3А на родном проводе падение напряжения составляет 0.8 вольт, на моем самодельном - 0.16В. На практике это грозит ранним переходом фонаря на пониженный режим яркости.

Батарейный отсек.
Для того чтобы заряжать аккумуляторы прямо в отсеке я решил использовать специальный .
Вещь очень дешевая и в то же время удобная. Из особенностей: имеет индикацию заряда, возможность подборочным резистором выставить ток заряда, а также mini USB разъем для внешнего ЗУ. Сразу был установлен номинал резистора 1.2к соответствующий току 1А. Изменяя этот номинал от 10к до 1.2к можно изменить зарядный ток от 0.13А до 1А соответственно. Это может быть актуально если использовать в качестве ЗУ USB порт ноутбука, или маломощную сетевую зарядку.

Подборочный резистор

После испытаний получены следующие данные: аккумулятор Sanyo 2600 был заряжен от начальных 3.1В до 4.21В примерно за 3 часа.
Далее кнопка включения.
Тут возникла самая большая проблема - нехватка места внутри отсека. Хотелось поставить что-то подобное как в обычных фонариках, но размеры таких выключателей слишком большие, а варианты поменьше не обеспечивают рабочий ток(напомню у меня 2.8А). Поэтому было решено использовать не кнопку, а мини выключатель. На донорские органы был пущен USB hub на 7 портов, там как раз используются маленькие переключатели, по одному на каждый порт.Свежий обзор такого хаба есть чуть ниже. Без напильника тут не обошлось.
Возвращаясь к плюсовому контакту держателя батареи. Он достаточно глубоко утоплен и из-за этого аккумулятор с плоским плюсом не достает до контакта. Тут все просто, разрезал на две половинки пружину от драйвера(она там все равно больше не нужна) и припаял к плюсовым контактам держателя.
Общий вид отсека после доработки.
Вместо двух светодиодов на плате модуля вынес один двухцветный на корпус. Правда опять вышла накладочка, нужен был светодиод с общим анодом, а в домашнем хозяйстве нашелся только с общим катодом. Пришлось сделать так: вместо родных светодиодов поставил перемычки, два анода(зеленый, красный) своего двухцветного диода припаял непосредственно к выводам микросхемы, а общий катод соединил с минусовым контактом. Все работает!
Готовый фонарь в сборе.


Бимшоты не получается сделать, поэтому извиняйте.
Подытожим.После всех изменений, получилось примерно то, что я хотел.К единственному недостатку можно отнести недостаточную площадь поверхности для охлаждения светодиода и с этим уже ничего не поделаешь. Сам драйвер достаточно эффективен, хоть и нагревается, но в дополнительном охлаждении не нуждается.На максимальной яркости долго нельзя держать. Тем, кто хочет просто купить и пользоваться данную модель я не посоветую, и наоборот, посоветую тем, кто любит разобрать, допилить, что-то улучшить. Выбирая эту модель фонаря я заранее рассчитывал на то, что буду сам допиливать под свои запросы. Для меня это как увлечение. На этом закончу свою историю. Жду конструктивную критику.

Планирую купить +68 Добавить в избранное Обзор понравился +57 +134